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leads to badly converging refinements if a > 0 or the 
shifts of 13 or [3 itself are large (a > 0). 

One can try to remove this difficulty by using g as a 
constant, which is calculated only once at the beginning 
of a refinement. This cannot be recommended because 
it corresponds to an increase of (at most) six 
parameters for each atom. A procedure which refines 
first the harmonic parameters for a = 0 and then the 
anharmonic parameters with 13 = constant can be used. 
But in the end all parameters must be refined together. 

References 

BACHMANN, R., KREUER, K. D., RABENAU, A. & SCHULZ, 
H. (1981) Conference on Chemistry and Physics of 
Sulfides, Selenides and Tellurium in Solids. Collected 
Abstracts. 

CAVA, R. J., REIDINGER, F. & WUENSCH, B. J. (1980). 
Solid State Commun. 24, 411-416. 

EDGEWORTH, F. Y. (1905). Proc. Cambridge Philos. So¢. 20, 
36-141. 

HOSHINO, S. & SAKUMA. T. (1980). J. Phys. Soe. Jpn, 48, 
1036. 

International Tables for X-ray Crystallography (1974). Vol. 
IV. Birmingham: Kynoch Press. 

JOHNSON, C. K. (1969).Aeta Cryst. A25, 187-194. 
JOHNSON, C. K. (1970). Thermal Neutron Diffraction, pp. 

132-160. Oxford Univ. Press. 
JOHNSON, C. K. (1980) Thermal Motion Analysis. Report 

1980 DOE/TIC-11068. Oak Ridge National Laboratory, 
Oak Ridge, Tennessee. 

MATSUBARA, Z. (1975). Prog. Theor. Phys. 53, 1210-1211. 
PERENTHALER, E. & SCHULZ, H. (198t) Solid State lonics, 

l, 335-365. 
PERENTHALER, E., SCHULZ, H. & BEYELER, H. U. (1981) 

Acta Cryst. B37, 1017-1023. 
SCHERINGER, C. (1977a). Acta Cryst. A33, 426-429. 
SCHERINGER, C. (1977b). Acta Cryst. A33, 879-884. 
SCHULZ, H., PERENTHALER, E. t~ ZUCKER, U. H. (1982). 

Acta Cryst. A. In the press. 
WALLACE, D. L. (1958). Ann. Math. Stat. 29, 635-654. 
WILLIS, I .  T. M. (1969). Acta Cryst. A25, 277-300. 
WILLIS, B. T. M. & PAYOR, A. W. (1975). Thermal 

Vibrations in Crystallography. Cambridge Univ. Press. 
ZUCKER, U. H., PERENTHALER, E., KUHS, W. F., 

BACHMANN, R. • SCHULZ, H. (1982). PROMETHEUS. 
Program system for structure refinements. Submitted to J. 
Appl. Cryst. 

ZUCKER, U. H. & SCHULZ, H. (1982). Acta Cryst. (1982). 
A38, 568-576. 

Acta Cryst. (1982). A38, 568-576 

Statistical Approaches for the Treatment of Anharmonic Motion in Crystals. 
II. Anharmonic Thermal Vibrations and Effective Atomic Potentials in the Fast Ionic 

Conductor Lithium Nitride (Li3N) 

BY UDO H. ZUCKER AND HEINZ SCHULZ 

Max-Planck-Institut f f fr  Festk6rperforschung, Heisenbergstrasse l, D-7 Stuttgart 80, 
Federal Republic o f  Germany 

(Received 24 June 1981 ; accepted 22 December 1981) 

Abstract 

Results of X-ray diffraction experiments on lithium 
nitride (Li3N) in the temperature range between 294 
and 888 K show strong anharmonic effects. The 
deviations from harmonicity cannot be interpreted by 
interstitial sites or split positions. The ~application of an 
anharmonic temperature factor which is based on the 
Gram-Char l i e r  expansion leads to an excellent fit of 
the data, whereas an anharmonic temperature factor, 
based on the Edgeworth series expansion, cannot fit the 
measurements in a satisfactory way. The corre- 
sponding anharmonic probability densities and the 
effective one-particle potentials are presented. The 

0567-7394/82/050568-09501.00 

activation energy of the ionic conduction in Li3N 
perpendicular to the c axis and the thermal expansion 
of the lattice constant are derived from the potentials. 
These results agree well with results obtained by other 
experimental techniques. Therefore it is concluded that 
the potentials derived from elastic scattering experi- 
ments are physically meaningful. 

1. Introduction 

The most commonly used structure factor formalisms 
for the treatment of anharmonic thermal motion in 
crystals has been discussed in part I (Zucker & Schulz, 
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1982). For general applications we prefer the formalism 
based on the Gram-Charlier series. This formalism can 
be used for all site symmetries and in each oblique 
crystal coordinate system. The corresponding prob- 
ability density function and the effective one-particle 
potential can be calculated exactly and evaluated 
numerically. 

In this paper we describe the investigation of the fast 
ionic conductor Li3N with X-ray diffraction. The 
investigations were carried out to check if the anhar- 
monic potentials derived from elastic scattering experi- 
ments are physically meaningful. Li3N was chosen for 
these investigations because of its simple crystal 
structure and its high ionic conductivity. 

Lithium nitride crystallizes in the hexagonal space 
group P6/mmm with a = 3.65 and c = 3.88 A (at 
room temperature). The nitrogen atoms occupy the 
centre of the elementary cell (Fig. 1). They are 
surrounded by eight lithium atoms in the shape of a 
hexagonal bipyramid (Zintl & Brauer, 1935; Rabenau 
& Schulz, 1976). Several investigations (Schulz & 
Schwarz, 1978; Pattison & Schneider, 1980; Kerker, 
1981) have shown that Li3N forms ionic bonds; its 
valence formula can be written therefore as Li3+N 3-. 

The large Li conductivity of Li3N (Boukamp & 
Huggins, 1976; von Alpen, Rabenau & Talat, 1977) 
suggested a high degree of positional Li disorder. X-ray 
investigations from 153 up to 678 K (Schulz & 
Thiemann, 1979) were carried out to determine the 
conduction paths in Li3N. The obtained difference 
electron densities using anisotropic temperature factors 
showed remarkable densities in the Li3N plane (z = 0). 
Schulz & Thiemann (1979) concluded therefore that 
the high ionic conductivity is Caused by jumps of the 
Li(2) ions (Fig. 1), where the precursors of these jumps 
are anharmonic thermal vibrations. No interstitial sites 
should be involved in this mechanism. 

Li3N therefore seemed to be well suited for testing 
models of anharmonic motion. In addition, the simple 
crystal structure of Li3 N allows a comparison between 
refined potentials and macroscopic parameters. 

Measurements were carried out up to a temperature 
of 888 K, because of the low occupation of high-energy 
states at room temperature. Temperatures above 700 K 
were needed to activate a measurable fraction of the 
lithium ions to energy states above the activation 
energy of 0.29 eV. (This is the activation energy of the 

~ Li(2) • (~ N : / ~ o z  . Li(1) 

(a) (b) 

Fig. 1. Crystal structure of Li3N. (a) Perspective drawing; (b) 
projection along ¢. 

ionic conductivity perpendicular to the c axis; an 
appreciable occupation of energy states above the 
activation energy parallel to c of 0.5 eV will not be 
obtained because of the melting point of 1086 K.) 

2. Experimental 

A single crystal of roughly spherical shape and about 
250 lam in diameter was taken from a large single 
crystal grown by the Czochralski technique (Sch6n- 
herr, M/iller & Winkler, 1978). The crystal was put into 
a tube of Lindemann glass to prevent reaction with the 
air. The use of quartz glass was impossible because 
Li3N reacts with quartz glass above 650 K. The tube of 
Lindemann glass was mechanically stabilized by fixing 
it in a tube of quartz glass (Lindemann glass becomes 
soft above 700 K). 

Data collection was carried out at nine different 
temperatures between 294 and 888 K. Above 900 K 
the Lindemann glass becomes too soft to fix the crystal. 
All measurements were done on a Philips single-crystal 
four-circle diffractometer PW 1100, using mono- 
chromatized Mo Ka radiation. The crystal was heated 
in a stream of hot air. The temperature was measured 
with a Cr-Ni  thermocouple within a precision of 5 K 
(10 K) up to (above) 670 K. In order to minimize the 
influence of diffuse scattering from the glass tubes to 
scans were used. At all but the highest temperatures 
about 690 reflections were measured (using the 
background-peak-background method). The reflec- 
tions are given by h arbitrary, k, l > 0, sin 0/2 < 
0 .9 /k  -l and their Friedel reflections. 

At 888 K only 80% of these data were measured 
with the additional condition l < 6. This set of data is 
incomplete because the crystal was destroyed during 
the measurement. The crystal reacted rapidly with the 
quartz glass at the end of the measurement. The first 
80% of the data set are not influenced by this process, 
judging from the measurement of the control 
reflections. 

The absorption could be neglected because /~r = 
0.06 for the crystal. The errors of the mean intensity 
for a group of at least six symmetry-equivalent 
reflections was calculated from the counting statistics 
and from the deviations of the single measurements 
from the mean. The larger value was then taken as 
a(]).  Now the curve a(])  as a function of J was used to 
estimate the errors of those J which were calculated 
from less than six single intensity measurements. These 
errors were used to calculate the weights for the 
least-squares refinements. 

The intensities were corrected for thermal diffuse 
scattering of first order using the method of Skelton & 
Katz (1969). The elastic constants except c13 were 
taken from Kress, Grimm, Press & Lefebevre (1981). 
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The constant c13 has not been measured so far because 
of experimental problems (cleavability). Therefore we 
used as an approximation c13 _~ 18 Tg m -1 s -2, which 
was calculated from the lattice dynamical model of 
LiaN (Chandrasekhar, Bhattachary, Migoni & Bilz, 
1978). 

All data were corrected for extinction using the 
formalism of Becker & Coppens (1974). The best 
results were obtained with the extinction type I, 
Gaussian distribution. The differences to the other 
types, however, are rather small. No difference within 
their errors was found between the Zachariasen (1967) 
and the Becker & Coppens (1974) correction (type I, 
Gaussian), because of the small extinction effects in 
LiaN [y _ 0.85, where I(obs) = yI(calc)]. 

3. The simple harmonic model of lithium nitride 

Fig. 2 shows the variation of the lattice constants with 
temperature in the range between 10 and 888 K. The 
measurements at 10 K were carried out by Heger 
(1979) using neutrons and those at 153 K by Schulz & 
Thiemann (1979) using X-rays. 

Apart from a slight increase at moderate tempera- 
tures, the c-axis constant is nearly constant within its 
error. The a-axis constant, in contrast, shows a marked 
increase with temperature. Below 273 K this increase is 

linear. Above room temperature, however, it varies 
rapidly until it tends to a saturation value above 820 K. 

The a-axis constant shows large deviations from a 
simple harmonic model. Such a model predicts (in 
combination with the assumption of isolated atoms) 
that the variations of the lattice constants are zero. 
Similar deviations can also be observed in the develop- 
ment of the reliability factor R,, (Fig. 3) for refine- 
ments using the conventional structure factor equation, 
as well as in the mean-square displacements (Fig. 4). 
[We emphasize that these displacements differ from 
linearity (predicted by the harmonic model) both to 
smaller and to larger values.] 

The largest deviations from a harmonic structure 
model can be deduced from a difference electron 
density. They are drawn for four selected temperatures 
in Fig. 5 for th e Li2N (z = 0) plane and in Fig. 6 for the 
plane shown in Fig. 6(e). All figures point to residual 
densities mainly around the Li(2) position. These 
densities increase considerably with increasing 
temperature. They are significantly higher than their 
errors, which are calculated to about 0.04 e A -3 and 
which are restricted to small areas in the vicinity of the 
atom sites only. The difference electron densities 
around the Li(2) positions correspond to a strong 
decrease of the occupation probability of Li(2) (Fig. 7), 
whereas the occupation of the Li(1) remains nearly 
constant. 

t 
3-90-1 lattice constants c 

3-88/1 A + +" ~ - -+n---~-  + 

3.68 ~ ~  

3-644'  t - - -  
| 
o 1~o z6o 360 460 56o 660 760 860 96o" 

Fig. 2. Thermal lattice expansion as a function of the temperature 
given by measurement and by model calculation. 
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Fig. 3. Reliability factor R.  as a function of temperature for the 
refinements with harmonic temperature factors and with anhar- 
monic temperature factors based on the Gram-Charlier 
expansion. 

4. Interstitial-site and spilt-atom models 

For the moment we restrict ourselves to the data 
measured at 888 K, because they have the largest 
deviations from the simple harmonic model. Table 1 
shows the reliability factors R, R w and the goodness of 
fit of an interstitial-site model [the ions lost from the 

1 1 Li(2) positions generate Frenkel defects at ~,~,0], a 
split-atom model [Li(2) ions at x,2x,0] and the simple 
harmonic model. 

J~2 ss~ ~S~ 

007 
• Li(2)llc 
v LI(1)lc / '  J 

0.05- • N II c .~- 

(103- 
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Fig. 4. Mean-square displacements refined for Li3N with harmonic 
temperature factors. The differences between (U2)N .... (U2)n±= 
and (U2)Li(1)e are negligible and therefore only ( / /2)N "c is drawn. 
The values at 153 K are from Schulz & Schwarz (1978), the 
values at 10 K from Heger (1979). 
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The refined occupation probability of the interstitial 
site is 0.075 (1). Added to the occupation of the Li(2) 
site one gets an overall occupation, which is a little less 
than the value refined at 294 K. However, the thermal 
vibrational amplitude of the interstitial site is equal to 
0.27 A. The coordinate of the split-atom model is x = 
0.354 (5), the sum of the occupation probabilities of 
three symmetrically equivalent Li(2) split positions 
equals 0.90 (3). 

The split-atom model can be rejected because of the 
high residual electron density (Fig. 8b) and the slight 
decrease of the reliability factors. The interstitial-site 
model leads to a significant decrease of the R values. 
However, the model has to be rejected, because of the 
following. 

(a) O 

i ( 2 ) ~ - ~ /  _ 

_/No o N/ 29 K 

(1) The corresponding difference electron density 
(Fig. 8a) shows a density with threefold symmetry 
around the Li(2) site, which points to an undescribed 
antisymmetric part of thermal vibrations or to a split 
position. 

N~ ~ £ ~N (a) 
i 

i'i(1) ~ Li(2) 8 Lifli 

"~ ' / ~  R '2 )N , ,  , ~  29/, K 
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373 K 
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, : 3 K  

(c) 

K 
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K 

Fig. 5. Difference electron densities of the harmonic model in the 
Li2N (z = 0) plane as a function of temperature. Lines +0.03, 
+0.06 .... e A -3. - -  Positive; - - -  negative. 
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Fig. 6. Difference electron densities in the plane described in Fig. 
6(e) as a function of temperature. Lines as in Fig. 5. 
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(c) 

Table 1. Refinements with harmonic temperature 

Model 

Interstitial sites 
Split atom 
Simple harmonic 

factors for  the 888 K data 

Goodness Number 
R R w of of 

(%) (%) fit parameters 

2.7 2.5 2.3 11 
3.4 2.9 2.9 l l  
4.5 3.8 3.8 10 

I_ occ.__uupation probabilit.y_ 
• I 

" ' l - ~  i~* Li 111 

l~\Li 121 

I I I I 1 I ' ! 

153 29/, 373 ~73 573 638 708 793 888 l 
K 

Fig. 7. Occupation probability of the lithium ions from refinements 
with harmonic temperature factors. Data at 10 K from 
refinements with neutrons (Heger, 1979). 

0 ,,-, z,), 

(a) 

., 
(b) 

Fig. 8. Difference electron density of Li3N (888 K) refined in an 
interstitial site model (a) and in a split-atom model (b). The 
crosses in (a) mark the interstitial sites. The threefold axis symbols 
in (b) mark the split positions. Lines as in Fig. 5. 

(2) The distance between two neighbouring Li(2) 
ions is too short  to insert an addit ional ion between 
them. 

(3) The electron density s h o w s . a  minimum at the 
posit ion of  the interstitial site and therefore we expect a 
max imum of the potential  at 1 (~,~,0). 

5. Anharmonic thermal vibrations in Li3N 

We applied several s tructure factor  equat ions for 
anharmonic  thermal  motion to the da ta  measured at 
888 K to investigate differences between these models. 
The results are given in Table 2. 

The residual density of the Edgeworth  expansion 
(Fig. 9a) is similar to that  of Fig. 8(b) and, by using a 

',.; ~lk\~..J/i]!~, ',. ." . . . . . .  , ~ ?  

S 

r \ ,  

I 

Fig. 9. Difference electron density of Li3N (888 K) in the Li2N 
plane. Results of refinements using the structure factor equation 
based on: (a) the Edgeworth expansion up to fourth-rank 
tensors; (b) the Gram-Charlier expansion up to fourth-rank 
tensors, (c) the Gram-Charlier expansion up to sixth-rank 
tensors for Li(2), up to fourth-rank tensors for Li(1) and N. Lines 
as in Fig. 5. 

/ ; 

:.-:; 

(a) 

/ 
, - , 0  

(b) 
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Table 2. Refinements with anharmonic ternperature factors for the 888 K data 

Model* 

Edgeworth expansion up to fourth order 
Gram-Charlier expansion up to fourth order 
Gram-Charlier expansion up to sixth order 

Goodness Number Occupation Difference 
R R,. of of of electron 

(%) (%) fit parameters Li(2) density 

2.7 2.6 2.6 19 0.93 (1) Fig 9(a) 
1.5 1.5 1.4 19 0.98 (1) Fig. 9(b) 
1.1 1.15 1.0 19t 0.98 (1) Fig. 9(c) 

* The occupation of Li(1) was fixed. Its value did not differ significantly from 1 when refined in the anharmonic models. The reliability 
factors did not change. 

+ All insignificant parameters were fixed in an iterative way to zero (described in Schulz, Perenthaler & Zucker, 1982) so that the 
number of independent parameters were reduced from 27 to 19. 

Table 3. Results of the structure refinement with the 
Gram-Charlier expansion for the 833 K data 

The temperature factor equation is listed in part I. 

Scale factor 79.7 (6) 
Extinction 0.23 (3) Mosaic spread 25.7" 

Thermal parameters 

N fill 0.0619 (14) 
fl33 0.0392 (12) 
diill (2.68 + 1-07) X 10 -6 
din3 (2.12 + 0.79) × 10 -6 

Li(1) fl~ 0.114 (4) 
fl33 0.0391 (11) 
dllll (11.8 + 5.2) × 10 -6 

Li(2) fll~ 0.136 (9) 
fl33 0.101 (3) 
Cll 1 --(2"7 + 0"3) X 10 -4 
dllll (99.4 + 22.0) x 10 -6 
ell111 --(4.8 + 1.5) × 10 -6 
flll111 (1"7 + 0"4) X 10 -6 
f333333 --(0"2 +_ O" 1) X 10 -6 
fllll2z (0"05 + 0" 14) X I0 -6 
f113333 --(0"09 "t- 0 " 0 5 )  × 1 0  - 6  

Occupation probability of Li(2) 0.98 (1) 

statistical test only, we have to reject this anharmonic 
model compared to the interstitial-site model. 

The structure factor equation based on the Gram-  
Charlier expansion improves the refinement consider- 
ably. The resulting difference electron density (Fig. 9c) 
is nearly equal to the residual density at 294 K and the 
occupation of the Li(2) site is equal to the value refined 
at 294 K. The final structure parameters are listed in 
Table 3. 

The application of this model to all nine sets of data* 
[reduced to significant parameters for each tempera- 
ture (ten up to 573 K, 11 for 638 K, 16 for 793 K and 
19 for 883 K and 888 K)] leads to a crystal structure 

* Lists of structure factors for all data sets have been deposited 
with the British Library Lending Division as Supplementary 
Publication No. SUP 36618 (19 pp.). Copies may be obtained 
through The Executive Secretary, International Union of 
Crystallography, 5 Abbey Square, Chester CH 1 2HU, England. 

model of Li3N which is excellently consistent in the 
entire temperature range of our measurements. The 
reliability factor Rw (Fig. 3) is nearly constant and it is 
equal to the value refined at room temperature. From 
Fig. 10 we conclude that the decrease of the occupation 
probability of Li(2) (Fig. 7) is mainly caused by 
uncovered parts of the electron density in the har- 
monic model and not by Frenkel defects. 

6. Anharmonic-effective one-particle potentials 

From the anharmonic temperature factors we can 
derive a probability density (Fig. 11) and an effective 
one-particle potential (Zucker & Schulz, 1982). 

In order to check the physical significance of the 
refined potential, it has to be calculated for each set of 
data. If the potential is nearly independent of tempera- 
ture, we can conclude that our refinements are 
physically meaningful. Interpreting potentials like that 
in Fig. 13, one has to take into account the occupation 
of the energy states. At low temperatures only a few 
atoms have a high energy and hence the potential is not 
well determined at points far away from the equilibrium 
position. The reliability of such parts of the potential 
improves with increasing temperature. A rough esti- 
mation of the occupation can be given by the 

101 

0.9" 

occupation probabit i ty Li (2) 

" x  
\ 

\ 
\ 
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\ 

@ on hormonic \ 

L 
~30 460 5(X) r ~  ?()0 BOO g00~ T 

K 

Fig. I0. Occupation probability of Li(2) in the harmonic and the . . . . .  
anharmonic structure model. (Gram-Charlier.) 
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(a) 

(b) 

F 

(c) 
Fig. 11. Probability density maps in the Li2N plane (888 K) 

calculated from (a) the Edgeworth and (b), (c) the Gram-Charlier 
expansion. (a), (b) Up to fourth-rank tensors, (c) up to sixth-rank 
tensors. Lines 5, 10, 15 ..... 100, 150 .... A -3. 

Gram-C. 
4. ord. 

I Edgeworth 
4. ord. 

....',,, \ harmonic 

- "  ~ i  I ""-...~N "\ 

Gram_C,[....[- 

6. ord. " ........ - [ ? . . ' . . ' . ~ . . , ~ . . . . .  ~...~.N N ..... 

VILi(2)] l / 

0.3 ~ / / / / / /  

-0.2 

0.1  / / /  

-1~0 -0.5 [ 1/3,2/3,01 0.5 
Fig. 12. Li(2) potential (888 K) for the harmonic and various 

anharmonic models in the N-Li(2)-Li(2)-N direction at z = 0. 
The results of all anharmonic potentials are identical at the right 
side of the drawing (Li-N bond). 

Bose-Einstein distribution. This distribution, however, 
is only valid for a parabolic, i.e. harmonic, potential 
and in the case of a fiat potential it leads to an 
overestimation. 

The potential considered here is that of the Li(2) ion 
in the N - L i ( 2 ) - L i ( 2 ) - N  direction (Fig. 12), where we 
find the largest deviations from a parabolic (harmonic) 
potential. In Fig. 12 this potential is drawn for the 
different anharmonic models, in Fig. 13 it is given as a 
function of temperature. (For the Edgeworth expansion 
we have only drawn the results of the normal 
Edgeworth approximation.)* 

The potential derived from the Gram-Char l ie r  
expansion of fourth and sixth order is a consistent 
improvement of the potential of the Edgeworth series. 
All anharmonic models give the same result in the 
direction towards the N 3- ion, whereas in the opposite 
direction the different models lead to different potential 
forms. Compared to the Edgeworth expansion the 
Gram-Char l ie r  series leads to a more detailed potential 
form. From the refined potentials we conclude a 
strongly repulsive interaction towards the N 3- ion, 
probably dominated by the exchange and Coulomb 
interactions of the electron clouds of Li(2) and N 3-. 
Compared with these interactions the interaction 
between neighbouring Li(2) + ions seems to be reduced 
by the smeared electron density (in the outer-range) of 
the N 3- ion, which behaves like a dielectric. The 
approach of two Li(2) ions, however, is limited by the 
Coulomb repulsion. 

A comparison of the harmonic potential with the 
anharmonic potentials explains the negative and posi- 
tive residual densities in Fig. 5(d). The anharmonic 

* The difference between the results of the normal and the 
extended approximation (Zucker & Schuiz, 1982) is at most 13.5% 
at the position of the Li(2) ion. The corresponding potential of the 
extended approximation is somewhat flatter in the Li(2) direction 
than the potential of the normal approximation. 

......... 833K 

...... ", 708K1 1294K 
T T 

~"':..'..,.:, \ \ 708 K 
888 K "'~'""~<:::'::z"'z"...~ \ ~ 

' " - ' . . , . ~  

-11o 

VILi(2)] ..: 
888 K ~ / eV ....- 

/ -0-3 

/ 
-0-2 i / 

- - -  O- 1 ./- 

-o:5 o:5 

Fig. 13. Li(2) potential in the anharmonic model using the 
Gram-Charlier expansion in the N--Li(2)-Li(2)-N direction at 
z = 0, for different temperatures. All results on the right side are 
identical for temperatures below and above 700 K, respectively. 
In addition the occupation probability 0.01 calculated from the 
Bose-Einstein distribution is shown by the horizontal arrows. 
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potentials are steeper than the harmonic potentials in 
the directions Li-N. Therefore the harmonic potential 
generates too much density in this direction and this 
shows up in the difference densities as a negative 
residual density. The opposite arguments are true for 
the direction Li-Li. 

Because of the above arguments, in Fig. 13 one can 
only compare those parts of the potentials for which the 
energy states are sufficiently occupied at different 
temperatures. In Fig. 13 we have marked the energies 
where the Bose-Einstein distribution gives an occu- 
pation of 0.01. At 888 K we therefore can estimate the 
potential at the midpoint between two Li(2) ions with 
good accuracy. 

Up to 700 K all potentials are nearly identical, 
therefore we have only drawn that for 294 K. 

7. Macroscopic quantities derived from the potential 

All calculations were carried out with the program 
system P R O M E T H E U S  (Zucker, Perenthaler, Kuhs, 
Bachmann & Schulz, 1982) towards a neighbouring 
Li(2) ion. The change of the potential as a function of 
temperature cannot be caused by an incomplete 
correction of the thermal diffuse scattering. 

In Fig. 15 we present the potential refined with the 
data measured at 888 K with and without corrections 
for the thermal diffuse scattering. The influence of the 
TDS is surprisingly small, although the maximum 
contribution of the TDS to the integrated intensity is 
40%. The reason for this insensitivity is that the 
potential is a logarithmic function of the probability 
density (Zucker & Schulz, 1982). The result, derived 
for LiaN, can be generalized to other substances, which 
do not show very strong anisotropic thermal diffuse 
scattering. Therefore theref inement  of one-particle 
potentials can thus be meaningful in cases where it has 
so far not been possible to correct for TDS. 

In Fig. 14 we have drawn the potential of the 
refinement using the Gram-Charlier expansion up to 
sixth order for two neighbouring Li(2) ions, where we 
have interpolated the potentials in the region of overlap. 
This interpolation is of course not unique. We have 
therefore assumed an error of about 0.04 eV. The 
height of the barrier between the atom sites is about 
0.29 (4) eV. If we interpret the ionic conduction 
mechanism of the Li + perpendicular to the c axis as a 
hopping process over this potential barrier, the con- 
ductivity must follow an Arrhenius law and the 
activation energy must be between 0.25 and 0.33 eV. 
Both conclusions are in agreement with the results 
reported by von Alpen et al. (1977), who measured an 
activation energy of 0.29 eV using electrical methods. 

In addition we have calculated the expansion of the 
lattice constants using the Li(2) potential (Appendix). 
The results are shown in Fig. 2. The main features of 
the thermal expansion are reproduced; the remaining 
deviations can be explained by the temperature 
dependence of the potential above 700 K. The good 
agreement between experimental and calculated ther- 
mal expansion is a convincing argument that the 
potentials derived from elastic scattering experiments 
are physically meaningful. 

V[Li(2 

--2:0 --1-0 0 x 
X 

Fig. 14. Potential between two neighbouring Li(2) ions at 888 K 
(Gram-Charlier up to sixth rank). It is interpolated in the region 
of overlap. 

The authors are greatly indebted to Drs W. F. Kuhs 
and E. Perenthaler for their assistance in preparing this 
work. 

APPENDIX 
Calculation of the thermal expansion of Li3N in a 

simple phenomenologleal model 

The arrangement of the ions in Li3N is given by the 
minimum of the free energy, which one cannot 
calculate in an easy way. Therefore a phenomeno- 
logical model was used. For simplicity temperature- 
independent potentials were assumed. 

With increasing temperature higher energy states are 
occupied. For every arbitrary direction the expectation 
value (X)r  of the position vector of a particle in the 
potential can be calculated. For centrosymmetric 
potentials we get a constant, whereas for acentric 
potentials we get a temperature-dependent value. In 
Li3N only the Li(2) ion is in an acentric potential and 
has in this model an influence on the lattice expansion. 

V[Li(2)I 
--without l TDS- eV 

with ~Correction 0.3 

~ ~  0.2 /; 

-O. 1 / /  

--110 -0.5 0.5 
Fig. 15. Potentials of the Li(2) position (888 K) along the direction 

N-Li--Li--N at z = 0 with and without correction of thermal 
diffuse scattering. Gram-Charlier expansion up to sixth rank. 
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The Li(2) potential is not acentric in the c direction and 
therefore the c constant is independent of temperature 
(Fig. 2). 

The a lattice constant can be changed by the Li(2) 
ions. To reduce the problem to a calculation in one 
dimension we make the assumption that the thermal 
lattice expansion is dominated by the approval of 
neighbouring Li(2) ions along the Li(2)-Li(2) direction. 

The lattice constant at T = 0 K should be a 0, which 
is given to a good approximation by the a constant 
measured at 10 K. For each temperature the cal- 
culated a constant, aca~c(T ) must simultaneously fulfil 
the two equations 

V/3 
acalc(T ) ----- - - ~  (ZIdN,Li(2) -- (X)T) 

and 

V/3 
acalc(T ) = ~ (ddLit2),Lit2)- 2(X)r),  

where dan is the atomic distance between the ions A and 
B at temperature T and ( x )  is the mean of the location 
parameter of Li(2) (measured from l z 7,7,0). (X)r  is 
calculated from the potential of the Li(2) ion refined at 
833 K (parameters of this refinement are given above). 

G O  

f x e x p [ V / ( k T ) ] d x  

oO 

y exp[-V/ (kT)]  dx 
- - 0 0  

The relation between the atomic distances 

dN,Li(2 ) ~--- S(T)  dLi(2),Li(2 ) 

is simplified by the additional assumption that the 
scaling factor S(T)  is independent of temperature. This 
approximation is valid as long as (X)T is small enough. 
We calculate S by minimizing the quadratic differences 
[ameasureo(T) -- acalc(T)] 2 and get s = 3.37. The 
corresponding acalc(T ) is drawn in Fig. 2. 

By interpreting the result of the a lattice constant of 
Fig. 2 one should keep in mind that the factor s is a 
scaling factor, which can only change the slope and 
does not influence the position of turning points and 
their sequence. 
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